
VIRUS BULLETIN www.virusbtn.com

4 SEPTEMBER 2006

GATT GOT YOUR TONGUE?
Peter Ferrie
Symantec Security Response, USA

As operating systems have become more secure (or at least
less insecure), virus writers have started to attack
applications instead. One of the most popular tools for an
anti-virus researcher is the Interactive Disassembler (IDA),
and its IDC scripting language has become the latest target,
thanks to W32/Gatt.

THE IDC LANGUAGE
.IDC files are script files that can control IDA by using the
IDC scripting language. The IDC language is very C-like in
appearance, and supports functions, variables, etc. – all of
the things that one would expect from a good scripting
language. However, as with Microsoft’s VBScript and
JScript scripting languages, IDC files are compiled at the
moment they are requested to run, and the resulting binary
form is executed directly in memory. There is even a
built-in Compile function, to perform dynamic compilation
of IDC files.

GATTMAN AND BOBBIN
W32/Gatt is a polymorphic entry-point obscuring infector
of these IDC files. It begins by allocating a one-megabyte(!)
buffer for the new decoder. That might sound like overkill,
but in fact the generated decoders often require more than
half of that buffer. However, there is nothing in the
generator to prevent a decoder from exceeding the buffer. If
that were to happen, the virus would simply crash, since it
contains no exception handling code.

After the allocation, the virus attempts to create a file
mapping of itself, and here is the first bug: even if the
mapping operation fails, the virus still attempts to infect
files. Another, similar bug follows immediately: even if the
attempt to map a view of the file fails, the virus still
attempts to infect files. Additionally, if any handle cannot
be closed for any reason, the allocated block is never freed
explicitly.

WARP FACTOR NINE
Assuming that all goes well, the virus will generate a new
decoder. Despite appearances, the decoder is only lightly
polymorphic. The polymorphic engine is capable of
producing random comments of both the ‘/**/’ and ‘//’
style, including comments that span multiple lines. For the
first comment style, which is designed to support multiple

lines already, no special handling is required. For the second
comment style, which is intended to be only a single line,
the virus ends the line with a backslash line-continuation
character.

Each of the tokens can also be split randomly across lines,
by using the backslash line-continuation character. In an
extreme case, it would be possible for the virus to produce
files where only a single character appears on each line, but
this is unlikely to occur. The ‘/**/’-style comments can also
appear between the tokens. Finally, non-token elements –
variables, and string elements – have their case mapped
randomly.

This is essentially all that the polymorphic engine does. The
only other variation is in the way in which the virus chooses
to rebuild itself.

TESTING, ONE, TWO... OOPS
Not surprisingly, the polymorphic engine is full of bugs.
The decoder begins with a conditional expression, which
tests whether a variable that the virus declares has a value of
0. The virus carries seven variations of this expression: two
‘if’ forms, two ‘while’ forms, and three ‘for’ forms. The bug
occurs when selecting the form to use: the engine uses the
‘test’ instruction instead of the ‘cmp’ instruction.

This bit-wise comparison results in two variations of the
expression that cannot be selected. One of those
unselectable blocks contains a bug anyway: a missing
semicolon character means that the line would generate a
syntax error during compilation, and the execution will not
occur. As if that wasn’t bad enough, one of the remaining
selectable conditional expressions also contains a bug. That
bug is also related to a semicolon character. However, this
time the bug is not that the semicolon character is missing,
but that it is in the wrong place. Again, the line would
generate a syntax error during compilation, and the
execution will not occur.

THE WRITE WAY
The virus works by converting IDC files into droppers of a
Windows executable file. This executable file is what
performs the infection of other files – IDC files infected
with W32/Gatt do directly infect other IDC files. To try to
hide the executable file within the IDC file, the virus
encodes the executable file into randomly sized blocks, and
writes them out individually. This is as opposed to some
viruses for other file formats, which declare an array of
some kind to hold the entire file as a single block.

In the case of W32/Gatt, eight-bit values can be written by
using ‘fputc’, followed by the literal character, or encoded

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5SEPTEMBER 2006

in ‘0x’ form. 16-bit values can be written using the
‘writeshort’ function, and 32-bit values can be encoded
using the ‘writelong’ function. These last two functions only
accept the value in ‘0x’ form. These functions also accept a
parameter that describes the endianness of the value. The
virus selects the endianness randomly, and encodes the
value in the appropriate order.

Otherwise, values can be written using the ‘writestr’
function. Another bug exists here: if the ‘writestr’ function
is used to write the final character in the file, the engine
will crash.

THE SEARCH BEGINS

Once the new decoder has been generated, the virus begins
the search for files to infect. The file enumeration is done
by using the usual recursive subdirectory searcher. The
virus wants to find any file whose suffix is ‘.IDC’. The
difference here is that the suffix is not compared directly.
Instead, the virus uses the SHA-1 algorithm to create a hash
of the suffix, and compares that hash to one that the virus
carries. This might have slowed down analysis a little bit,
to determine the file type of interest, if the virus author
hadn’t made it quite clear what kind of file the virus wanted
to infect.

The virus has no infection marker. The nearest thing to an
infection marker is a check of the size of file that has been
found. Any file larger than 419,430 bytes (0x66666 in hex)
is considered to be infected. If a file is not infected already,
then the virus searches within it for the string ‘static’, which
the virus assumes is the start of a subroutine. If that string is
found, then the virus examines the text between the first left
and last right brace characters that it sees in that subroutine,
counting all of the semicolon characters that it sees.

The virus also watches for the ‘for’ token, since it also
contains semicolon characters, but they must not be
counted. The virus recognizes the last right brace by
incrementing a brace count for each left brace that is seen
after the first one, and decrementing the count for each right
brace that is seen. Once the count reaches zero, the virus
stops looking.

Once the last right brace is seen, the virus chooses randomly
from the count of semicolon characters, and inserts the virus
code after the nth semicolon, which makes the virus
entry-point obscuring. A critical bug occurs here: if any file
is infected, the stack is unbalanced because of some leftover
code. Specifically, the parameters for a particular API have
been pushed onto the stack, but presumably during
‘optimization’ of the code, the API call was moved into a
subroutine. This subroutine pushes the parameters locally,
so the old parameters remain on the stack. Because of this

bug, the virus crashes immediately after a single infection.
Perhaps the virus author tested only on a single file at a
time, and so never noticed the problem.

MAKING A HASH OF THINGS

If the current file is not an .IDC file, then the virus hashes
the full filename and compares it to a list of five hashes that
the virus carries. The reason for this check was clear even
before the hashes were decoded: recognizable packer
switches are present in the virus body, and though they are
never used, it gave me a clue about the probable filenames.
Three of the hashes were easy to guess, and they correspond
to three runtime compressors (EXE32PACK.EXE,
PEPACK.EXE, UPX.EXE). The other two yielded very
quickly after a brute-force attack. One is a file manipulation
tool called VGALIGN.EXE, but the other is an unknown
tool called SPEC.EXE.

If one of these files is found, then the virus attempts to
copy itself into the directory that contains that file. A bug
exists here: the copy will fail if both files are present in the
same directory, and in that case, the virus will keep
searching for files.

If the copy succeeds, then the virus executes the file that
corresponds to the hash, passing the virus filename as a
parameter. The idea here is to use one of these tools to
change the appearance of the file, and then to regenerate the
decoder using the new file. However, yet another bug exists
here: process execution is asynchronous, but the virus does
not wait for the new process to complete before attempting
to access the virus file again. Thus, the original virus file is
used to generate the decoder, resulting in all encoded files
having the same appearance.

CONCLUSION

On the day that the virus author released the virus, he posted
a message on his website that said the virus ‘will be very
hard for AVers to detect’. Later that same day, we started
detecting it. The following day, the virus author changed the
message to one that said the virus ‘will not be released’. I’d
like to think that it’s not a coincidence – it might look
polymorphic to him, but it doesn’t to me.

W32.Gatt

Type: Polymorphic entry-point obscuring file
infector.

Size: 16,384 bytes (EXE), varies (IDC).

